Iso-Analytical Limited

Report of Analysis

IA-R001 – ¹⁵N/¹³C Wheat Flour Laboratory Standard

This laboratory standard is intended to provide a sample of known isotope composition with $^{15}\text{N}/^{14}\text{N}$ and $^{13}\text{C}/^{12}\text{C}$ isotope ratios stated in parts per thousand difference (‰) from Air and the V-PDB (Pee Dee Belemnite) isotope ratio standards, respectively. This laboratory standard is not certified, but is provided to allow routine checking of the overall quality of measurements performed by continuous-flow isotope ratio mass spectrometry, and may be used as part of a quality control program. It is not intended for use as a substitute for calibration materials or inter-comparison materials distributed by NIST or IAEA.

Analysis

The $^{15}\text{N}/^{14}\text{N}$ isotope ratio of the laboratory standard was measured by elemental analyser continuous-flow isotope ratio mass spectrometry using IAEA-N-1 (Ammonium Sulphate) as the calibration material. The $^{15}\text{N}/^{14}\text{N}$ isotope ratio in the laboratory standard was measured five times on four separate occasions.

The ¹³C/¹²C isotope ratio of the laboratory standard was measured by elemental analyser continuous-flow isotope ratio mass spectrometry using IAEA-CH6 (ANU Sucrose) as the calibration material. The ¹³C/¹²C isotope ratio in the laboratory standard was measured five times on three separate occasions.

Isotope Abundance

The laboratory standard IA-R001 is compared to Air for the 15 N/ 14 N isotope ratio and V-PDB for the 13 C/ 12 C isotope ratio. The isotope composition of the laboratory standard in ‰ relative to Air and V-PDB is:

Laboratory Standard	$\delta^{15}N_{Air}\left(\%\right)\\\delta_{m}\pm\sigma_{1}$	$\delta^{13}C_{V\text{-PDB}} (\%) \\ \delta_m \pm \sigma_1$
IA-R001	+2.55 ± 0.22	-26.43 ± 0.08

Note:
$$\delta_m = \sum_{i=1}^n \delta_i / n$$
; $\sigma_1 = \sqrt{\sum_{i=1}^n (\delta_m - \delta_i)^2 / (n-1)}$; $n = 15$ for ¹³C and 20 for ¹⁵N

April 23, 2003

Steven T. Brookes

Charles Belanger