Iso-Analytical Limited

Report of Analysis

IA-R068 – ¹⁵N/¹³C/³⁴S Soy Protein Laboratory Standard

This laboratory standard is intended to provide a sample of known isotope composition with $^{15}N/^{14}N$, $^{13}C/^{12}C$ and $^{34}S/^{32}S$ isotope ratios stated in parts per thousand difference (‰) from Air, V-PDB (Pee Dee Belemnite) and V-CDT (Canyon Diablo Troilite) isotope ratio standards, respectively. This laboratory standard is not certified, but is provided to allow routine checking of the overall quality of measurements performed by continuous-flow isotope ratio mass spectrometry, and may be used as part of a quality control program. It is not intended for use as a substitute for calibration materials or inter-comparison materials distributed by NIST or IAEA.

Analysis

The $^{15}\text{N}/^{14}\text{N}$ isotope ratio of the laboratory standard was measured by elemental analyser continuous-flow isotope ratio mass spectrometry using IAEA-N-1 (Ammonium Sulphate, $\delta^{15}\text{N} = 0.40$ % vs. Air) as the calibration material. The $^{15}\text{N}/^{14}\text{N}$ isotope ratio in the laboratory standard was measured six times on three separate occasions.

The $^{13}\text{C}/^{12}\text{C}$ isotope ratio of the laboratory standard was measured by elemental analyser continuous-flow isotope ratio mass spectrometry using IAEA-CH-6 (ANU Sucrose, $\delta^{13}\text{C} = -10.45$ ‰ vs. V-PDB) and IAEA-CH-7 (Polyethylene foil, $\delta^{13}\text{C} = -32.15$ ‰ vs. V-PDB) as the calibration material. The $^{13}\text{C}/^{12}\text{C}$ isotope ratio in the laboratory standard was measured six times on three separate occasions.

The $^{34}\text{S}/^{32}\text{S}$ isotope ratio of the laboratory standard was measured by elemental analyser continuous-flow isotope ratio mass spectrometry using NBS-127 (Barium Sulphate, $\delta^{34}\text{S} = 20.3$ ‰ vs. CDT) and IAEA-SO-5 (Barium Sulphate, $\delta^{34}\text{S} = 0.5$ ‰ vs. V-CDT) as the calibration materials. The $^{34}\text{S}/^{32}\text{S}$ isotope ratio in the laboratory standard was measured six times on three separate occasions.

Isotope Abundance

The laboratory standard IA-R068 is compared to Air for the $^{15}\text{N}/^{14}\text{N}$ isotope ratio, to V-PDB for the $^{13}\text{C}/^{12}\text{C}$ isotope ratio and to V-CDT for the $^{34}\text{S}/^{32}\text{S}$ isotope ratio. The isotope composition of the laboratory standard in ‰ relative to Air, V-PDB and V-CDT is:

Laboratory Standard	$\delta^{15}N_{Air} (\%)$ $\delta_m \pm \sigma_1$	$\begin{array}{c} \delta^{13}C_{V\text{-PDB}}\left(\%\right) \\ \delta_m \pm \sigma_1 \end{array}$	$\delta^{34}S_{V\text{-}CDT}\ (\%)$ $\delta_m \pm \sigma_1$
IA-R068	0.99 ± 0.07	-25.22 ± 0.02	5.25 ± 0.27

Note:
$$\delta_m = \sum_{i=1}^n \delta_i / n$$
; $\sigma_1 = \sqrt{\sum_{i=1}^n (\delta_m - \delta_i)^2 / (n-1)}$;

$$n = 18$$
 for 13 C, $n = 18$ for 15 N and $n = 16$ for 34 S

October 23, 2015 Steven T. Brookes

Ian S. Begley