Iso-Analytical Limited

Report of Analysis

IA-R072- ${ }^{2} \mathbf{H}$ and ${ }^{13} \mathbf{C}$ Mineral Oil Laboratory Standard

This laboratory standard is intended to provide a sample of known isotope composition with ${ }^{2} \mathrm{H} /{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ isotope ratios stated in parts per thousand difference (\%) from V-SMOW and the V-PDB (Pee Dee Belemnite) isotope ratio standards, respectively. This laboratory standard is not certified, but is provided to allow routine checking of the overall quality of measurements performed by continuous-flow isotope ratio mass spectrometry, and may be used as part of a quality control program. It is not intended for use as a substitute for calibration materials or inter-comparison materials distributed by NIST, USGS or IAEA.

Analysis

The ${ }^{2} \mathrm{H} /{ }^{1} \mathrm{H}$ isotope ratio of the laboratory standard was measured by elemental analyser continuous-flow isotope ratio mass spectrometry using NBS-22 (Mineral Oil, $\delta^{2} \mathrm{H}=-116.09 \%$ vs. V-SMOW-SLAP) as the calibration material. The ${ }^{2} \mathrm{H} /{ }^{1} \mathrm{H}$ isotope ratio in the laboratory standard was measured eight times on three separate occasions.

The ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ isotope ratio of the laboratory standard was measured by elemental analyser continuous-flow isotope ratio mass spectrometry using NBS-22 (Mineral Oil, $\delta^{13} \mathrm{C}=-30.03 \%$ vs. V-PDB-LSVEC) as the calibration material. The ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ isotope ratio in the laboratory standard was measured six times on four separate occasions.

Isotope Abundance

The laboratory standard IA-R072 is compared to V-SMOW for the ${ }^{2} \mathrm{H} /{ }^{1} \mathrm{H}$ isotope ratio and V-PDB for the ${ }^{13} \mathrm{C} /{ }^{12} \mathrm{C}$ isotope ratio. The isotope composition of the laboratory standard in \% relative to V-SMOW and V-PDB is:

Laboratory Standard	$\delta^{2} \mathrm{H}_{\text {V-SMOW }}(\%)$ $\delta_{\mathrm{m}} \pm \sigma_{1}$	$\delta^{13} \mathrm{C}_{\text {V-PDB }}(\%)$ $\delta_{\mathrm{m}} \pm \sigma_{1}$
		-148.61 ± 2.16

Note: $\quad \delta_{\mathrm{m}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \delta_{\mathrm{i}} / \mathrm{n} ; \quad \sigma_{1}=\sqrt{ } \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\delta_{\mathrm{m}}-\delta_{\mathrm{i}}\right)^{2} /(\mathrm{n}-1) ; \mathrm{n}=24$ for ${ }^{2} \mathrm{H}$ and for ${ }^{13} \mathrm{C}$

May 3, $2019 \quad$ Steven T. Brookes Charles Belanger
Iso-Analytical, The Quantum, Phase 3, Marshfield Bank, Crewe, Cheshire, CW2 8UY, UK
Tel: +44 1270 509533, Fax +44 1270 509511, info@iso-analytical.com

