Iso-Analytical Limited

Report of Analysis

IA-R072- ²H and ¹³C Mineral Oil Laboratory Standard

This laboratory standard is intended to provide a sample of known isotope composition with $^2H/^1H$ and $^{13}C/^{12}C$ isotope ratios stated in parts per thousand difference (‰) from V-SMOW and the V-PDB (Pee Dee Belemnite) isotope ratio standards, respectively. This laboratory standard is not certified, but is provided to allow routine checking of the overall quality of measurements performed by continuous-flow isotope ratio mass spectrometry, and may be used as part of a quality control program. It is not intended for use as a substitute for calibration materials or inter-comparison materials distributed by NIST, USGS or IAEA.

<u>Analysis</u>

The $^2\text{H}/^1\text{H}$ isotope ratio of the laboratory standard was measured by elemental analyser continuous-flow isotope ratio mass spectrometry using NBS-22 (Mineral Oil, $\delta^2\text{H} = -116.09$ % vs. V-SMOW-SLAP) as the calibration material. The $^2\text{H}/^1\text{H}$ isotope ratio in the laboratory standard was measured eight times on three separate occasions.

The $^{13}\text{C}/^{12}\text{C}$ isotope ratio of the laboratory standard was measured by elemental analyser continuous-flow isotope ratio mass spectrometry using NBS-22 (Mineral Oil, $\delta^{13}\text{C} = -30.03$ % vs. V-PDB-LSVEC) as the calibration material. The $^{13}\text{C}/^{12}\text{C}$ isotope ratio in the laboratory standard was measured six times on four separate occasions.

Isotope Abundance

The laboratory standard IA-R072 is compared to V-SMOW for the ²H/¹H isotope ratio and V-PDB for the ¹³C/¹²C isotope ratio. The isotope composition of the laboratory standard in ‰ relative to V-SMOW and V-PDB is:

Laboratory Standard	$\delta^2 H_{V\text{-SMOW}} (\%)$ $\delta_m \pm \sigma_1$	$\delta^{13}C_{V\text{-PDB}}$ (‰) $\delta_{m} \pm \sigma_{1}$
IA-R072	-148.61 ± 2.16	-29.27 ± 0.02

Note:
$$\delta_m = \sum\limits_{i=1}^n \delta_i / n$$
; $\sigma_1 = \sqrt{\sum\limits_{i=1}^n (\delta_m - \delta_i)^2 / (n-1)}$; $n = 24$ for 2H and for ^{13}C

May 3, 2019

Steven T. Brookes

Charles Belanger